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1 T NT'I IC)tICT ON

The following interim technical report has been prepared by

S&D Dynamics, Inc. under Contract No. DAAG29-83-C-0004 to the

U.S. Army Research Office, Research Triangle Park, NC.

This interim report presents the detailed formulation of the

equations of motion of a projectile of finite geometric and iner-

tial properties traveling in a flexible gun tube. The formulation

permits the projectile six degrees-of-freedom relative to the gun

tube; three orthogonal translational motions of the projectile

c.g. relative to the instantaneous gun tube axis and three

(Eulerian) rotations of the projectile about its c.g. (related

to projectile pitch, yaw and roll motions). The formulation

accounts for projectile spin, mass eccentricity, elastic deforma-

tion of the projectile rotating band and bourrelet, and projec-

tile/bore interfacial friction and torque transmission. Further-

more, the formulation is unrestricted regarding the nature of gun

tube motion.

The detailed formulation is presented in Section 2. A

comparison of this formulation with other projectile descriptions

and formulations is presented in Section 3. Conclusions are

presented in Section 4. References cited are presented in

2 Section 5. The Euler angles and associated transformations

employed are defined in the Appendix.

Ii
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2. FORMULATION OF PROJECTILE EQUATIONS OF MOTION

The simultaneous system of differential equations which

describe the general, six degree-of-freedom motion of a projnctile

traveling in a flexible gun tube are formulated in this section.

The pertinent equations are formulated in terms of the loads and

moments applied to the projectile in Section 2.1. Simplification

of the projectile angular velocity and acceleration expressions

is discussed in Section 2.2. The applied loads and moments acting

on the projectile are defined in Section 2.3. The solution

technique, which allows simultaneous solution of the equations

herein developed with the equations of' the gun dynamics simulation

code previously developed, is discussed briefly in Section 2.4

and will be presented in greater detail in a separate report.

2.1 Projectile Equations of Motion in Terms of .Applied
Loads and Moments

The projectile is described subject to the following

assumptions:

(i) the projectile is assumed to consist o~f a main body,

rotating band and bourrelet;

(ii) the projectile main-body is assumed to behave as a

rigid body of finlio geometry and inertia;

(iii) the rotating band and bourrelet are assumed to behave

elastically (although not necessarily linearly

elastic);

(iv) the projectile c.g. is assumed to be eccentrically

located relative to its geometric center;

(v) the projectile is permitted six degrees-of-freedom

relative to the gun tube, namely pitch, yaw and roll

7_2
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about Eulerian axes, and translational motions along

body-fixed (orthogonal) axes.

The following coordinate systems are introduced for the

purpose of formulating the equations of motion of the projectile:

(i) S , with coordinates (x ,y ,z') and unit triad

is defined as an inertial reference

frame fixed at the initial projectile position such

that its orientation coincides with the global

(earth-fixed) coordinate system defined in the gun

dynamics simulation code;

(ii) So, with coordinates (Xoyo, z) and unit triad

(oo •t 0 ), is defined as an intermediate reference

frame whose origin translates with the projectile

along the gun tube axis and rotates with the projectile

about the instantaneous tangent to the gun tube axis.

to is directed toward the gun tube muzzle, along the

instantaneous gun tube axis. At the initial projectile

position, TO is directed along the radius from the gun

tube centerline to the projectile c.g.;

(iii) S, with coordinates (xyz) and unit triad

is defined as a body-fixed coordinate system whose

origin is located at the projectile c.g. t is

directed toward the projectile nose, parallel to its

geometric axis. At the initial projectile position,

Sis parallel to

It is noted that the kinematic relations between S0 and S

incorporate gun tube motion, as well as the two degrees-of-freedom

of the projectile corresponding to translational motion along the

3



gun tube axis and spin (both of which are prescribed by interior

ballistics data). The remaining four degrees-or-freedom of the

projectile are formulated in S relative to S . Referring to

Figure 1, these are defined as the translational displacements

of the projectile c.g. in the To,-to plane (denoted as y cg and

z c), and the Euler angles corresponding to projectile pitch and

yaw, namely )0# and e respectively.
For the purpose of formulati-iiL, the velocity and acceleration

of the origin of S relative to S , the Euler angles

defined in the Appendix are introduced subject to the transforma-

tion

': of the oriel,~ ~A o o + a~tlv to + 1/3 uer•ls(% eo

I.4 +± 24' +X"

where (referring to the Appendix),

Coos C's a.

cos- sine. co si,%sz o t.- 1 '' i+ nD Itsin osi ,+c 51'co 9
--- e = co e rL.Co+ S2 +Si o/~iL

0~)

4 Ln'm--- ,n~i~�n " C • Of(

'40x= Cos 005 btfeGCcS~S~Y

=~ C0 ,CO's Pir&
-.----,, = cos O.c * I
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Since S is constrained to move with the projectile, the

0

position vector of its origin, Ro0 as shown Ln rigure 2, has

components which are functions of time, t, as well as distance

along the gun tube axis, s. Hence, the velocity of the origin

of S 0 relative to S , namely 0 (= dR /dt), is given as

A
Sint-" 1 lies along the instantaneous tangent to the gun

tube axis it follows that

it • ° °-12 ,, c,,/30 @

Hence,

Applying the transformatLion pro.:'-i'ted iii equation (I), and

noting that ds/dt denotes thir instuilt-eoits projectile velocity,

V P (as prescribed by interior ballistics data), there results

from equation (5) the velocity of S in the form

+ 14 1 "
iIl lt 51 6

Since S is earth-fixed, the instantaicous acceleration of

S is readily obtained by differentiating equation (3) with

respect to time noting that

from which there results

6
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do • + 2V if' Z, +ap,fe+2 p+a,-~ ] 't ~ "

where a denotes dv /,It.
p p

Once again npplying the Iransformation presented in equation

(I), ind noting equation (4), there results the ac",eleration of

S in the form
0

a a,,+1. +

where,

- L,~Lc~~o1-~si¶~

;;• 5. •.](io)

Noting that S is constrained to move with the gun tube in

0 0 0II 10

di C
i thexpeson pone, (wittes ngua eoiy o relative to s),i• iveha

L.• '+ dt



where (referring to the Appendix),

4J.= x,- Ysi o.

* (12)

OR1  + COsn~ CO.S 8.C OsY

and 0d,6 0 and (f are obtained applying equation (7).

Noting further that

_.) - ()+L)(• C) (13)

there results the angular acceleration of S relative to S
0'• * 4.'o• " - *.L•le -'A(•)l e(

= J~ *+ w w,,*(14)

where (from equation (12)),

C= 05os Co's 6. 5in Y, - 6.3inoz sinl + dCO(15)

L +.' cos 0 - .•ss 6L cos f. - 4.

Equations (6), (9), (11) and (14) prescribe the linear and

angular velocities and accelerations of So relative to S . It

remains to prescribe the motion of the projectile c.g. relative

to S
0

Letting v and ; respectively denote the translationalcg cg

velocity and acceleration of S relative to Sop it follows from



Figure 1 that

r~
t (16)

Letting U) eg denote the nniuliar velocity of S rlati.ve So,

and further mpecifying that

W~3=%4  .4 (17)

the components of cg are prescribed (analogous to equation

(12)) as functions of the Euler angles ('',B,f) of S relacive to

S in the form

Will -95 n? +o Yo 0 " CoOsrST 8

Noting that SO0 is prescribed to rotate with S, equation

(17) must be subjected to the constraint

w =• . -- 0(19)

Cie

Introducing the transformation from S to So, namely

1r + 10 4

00 (20)

+ ,lx Is4



and noting that the direction cosineut, ip are defined in terms

of the Euler angles (V,O,19) analogous to the definition presented

in equation (2), there results from equations (17) thru (20)

=(ar9 (21)

which prescribes the dependence between the Euler angles of S

required to satisfy the constraint presented in equation (19).

Equations (16) and (17) (subject to equation (21)) respec-

tively prescribe the translational and aragular motions of the

projectile c.g. relative to S 0

Referring to Figures I and 2, thu instantaneous position

vector of S relative to S is given by Ro + cg Hence, noting

equation (13), the (absolute) translational acceleration of the

projectile c.g. (relative to S'), namely T, is given by

+ - ~ (22)

while the (total) angular velocity of the projectile (relative to

S is given by

CJO +LJ C(23)

Applying equation (13) to each vector on the right-hand side

of equation (23) there results the (total) angular acceleration

of the projectile (relative to S')

Ws+ We -Q (24)

Substituting equations (9), (11), (14), and (16) into equa-

tion (22) there results

11M _



+

+ [,, + + + -

... '+ Z3 +.z * +- (25)

Transforming equation (11) from S to S via equation (20)

and substituting the result, along with equation (17), into

equation (23), there results

! 3 = Wa+ 4+W (., (26)

where,

(A)3j + '4 + + A,

w +1, (A) + .,., (J7 + (27). (

Transforming equation (114) from S to S via equation (20),

differentiating the components of equation (17) with respect to

time, and substituting these results, along with equation (17),

into equation (24), there results

= 4 + + (28)

where,

12
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+ +

-+ * , ',... I +, • + 1,, + h+ +..+. "•+..,,*. +

P/1 (29)

-e+ - , .. +, +41. + ( Z A+ ,4, * ,. 101 +

w - .,Il li,,. + It,, wp,.,41,,,,.)

and (from equation (18)),

)Ps - ir e - Y e cosO

, cosf -+ -• ,,' (30)

and (from equation (21))

-- ane +co0Lo+ + 19ta~n 0ta Ve (31 )

We are now in a position to formulate the projectile equa-

tions of motion. Letting I (which remains to be prescribed)

denote the resultant applied force acting at the projectile c.g.,

and applying Newton's law of motion with F as prescribed in equa-

tion (25), there resulti the three scalar equations of transla-

13



tional motion of the projectile c.g. (written relative to So) in

the form

, [ W , . ,..,w - y., ÷ C) ,.- (32)
F,=*,[a,. +.÷,o.÷[,t(,g ,%) excjx t•,•

where m denotts the mass of the projectile, and F , F and FP xo yo zo

denote the components of F along the respective axes of S0

Letting R (which also remains to be prescribed) denote the

resultant applied moment acting about the projectile c.g., and

applying the principle of angular momentum with Q and 6 prescribed

respectively in equations (26) and (28), there results the three

scalar equations which prescribe angular motion of the projectile

(written relative to S in order to preclude introducing time

derivatives of the projectile inertia tensor) in the form

+ U. - 1., 44 W Ca) -I,,(4 , ()

ti.1 Iy,(I.-I,,h) W,•÷•,4 -c-I,.(c• ,,iA)" -[ -- "W (33)M,= In,, ÷(I , I,,(w ,-4)- I,(L £41 0) - -

where Mx, My and Mz denote the components of MA about the respec-

tive axes of S, and 1x, Iy, ... , I denote the elements of the

projectile inertia tensor written relative to S.

Within the framework of the assumptions introduced, equations

(32) ,ansd (33) present the geonorl o.qiittions of proj.. tI.Le motion

1 l



in terms of the applied loads uIul momenits.

2.2 Simplification of Ang2lar Velocity and
Acceleration Expressions

The expressions for the terms representing the angular

velocity and acceleration components entering equation (33) may

be greatly simplified by noting that for most practical applica-

tionsafand 8 are sufficiently small such that

.sin6 • ; cos5 G I (34)

Under this condition it follows from equation (21) that

<ý --- ,ý4 6(35)

while from the mean value theorem it follows that the integral of

of equation (35) will at most be of the orderV'9. Hencep to

first order

C? 0 (36)

Imposing the above conditions and. retaining only linear (first

order) terms inV'and 6, the direction cosines for the transforma-

tion from S to S0 , as given in equation (20), simplify to

,,, = 2& = A, = 1

(37)

' 0

15



Noting that equations (18) and (30) simplify respectively to

(38)

and

w -Y' (39)

and substituting these expressions, along with eqiation (37) into

equations (27) and (29), there results the greatly simplified

expressions for the angular velocity and acceleration components

entering equation (33) in the form

,• + - w,. (4o)

and

16



• c•... + .,. . -.) -+ (# .+( wi,.,',) + wi,. (41)

2.3 Applied Loads and Moments

The equations of projectile motion previously developed

require specification of the applied loads, T (written relative

to So), and the applied moments, i (written relative to S), for

completion of the formulation. These loads and moments arise as

a consequence of the projectile weight, interfacial contact of

the rotating band and bourrelet with the bore, propellant gas

pressure acting at the bade of the projectile, and compressed

air ahead of the projectile.

2.3.1 Projectile Weight Loading

The load applied to the projectile c.g. due to its own

weight is given by

(42)

where m pand g denote respectively the projectile mass and

gravitational acceleration.

Applying the transformation given in equation (i), equation

(42) is written in component form (relative to So for applica-

tion to equation (32), as follows

17
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Fig nnrl miSiYCos6.

Fa -MP n sin6Lcos55', - cotsnf.)

2.3.2 Rotating-Band/Bore and Bourrelet/Bore

Interfacial Contact Loadings

The loads and moments applied at the projectile c.g. due to

interfacial contact of the rotating band and bourrelet with the

bore are derived subject to the following assumptions:

(i) radial deformation of the rotating band and bourrelet

are characterized by Winkler foundation models;

rendering rotating-band/bore and bourrelet/bore

interfacial load distributions which are directed

radially, with local magnitude determined by

resultant local radial displacement;

(ii) both the rotating band and bourrelet are permitted

radial pro-loaded initial states;

(iii) the instantaneous annular segments defining rotating-

band/bore and bourrelet/bore intcarfacial. contact are

kinematically determined by the extent of annular

compression within the rotating band and bourrelet

at each instant;

(iv) the projectile main-body is assumed to be rigid

compared to the rotating band and bourrelet;

(v) curvature of the gun tube axis between the planes

containing the rotating band and bourrelet is

!H I!I8



neglected;

(vi) rifling torque is transmitted without slippage via

a uniformly distributed circumferential load acting

over the instantaneous annular segment of the

rotating band in contact with the bore;

(vii) the Euler angles •- and 6 satisfy equation (34).

In view of Assumptions (iv) and (vii), the displacement

relative to So0 a, of any point of the projectile in a plane

perpendicular to its geometric axis is given by

where 2 denotes the perpendicular distance from the projectile

c.g. to the plane of interest. It is noted that 1;0 implies

that the plane of interest is forward of the projectile c.g.,

,t I0 implies ithat the plane of interest contains the projectile

c.g., while 14 0 implies that the plane of interest is aft of the

i/• c .g.

The radial component of this displacement, Sr in given as

SrC 0.5. (% 3 J')o9P + ( zC,2XiV (45)

where $ denotes the angle between the projection of the yo-axis

Ii onto the plane of interest and the line from the gun tube

centerline to the point under consideration.

The maximum radial displacement, m in the plane of•,•I~i I •*•max•

interest is determined by setting

ý Cý = 0(46)
I II If

19
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Letting 9max denote the origntation of -naxiwxm radial

displacement, there results from equation (45)

~e~= (47)

and hence,

S y, f +(48)

In view of equations (47) and (48), there results fr'om

equation (45)

J,-= S." -OS9 (49)

Equation (49) denotes the radial component of displacement

of any point in the plane of interest, and in particular, it may

be used to specify the radial displacement of the planes containing

the rotating band and bourrelet at the bore surface. Tt should

be noted that the radial displacement as given by equation (49)

is symmetric with respect to the angle Pma..

In the sequel, quantities referred to the plane containing

the bourrelet are assigned the subscript "1"1, quantities referred

to the plane containing the rotating lmtd are assigned the

subscript "2". Furthermore, Jiax is replaced by either 1 or

82, and Imax is replaced by either 11 or f2"

Assuming that the bourrelet is forward of the projectile

c.g., while the rotating band is aft of the c.gp the radial

displacement at the bourrelet due to projectile motion is given

by

Cos - (50)

20



where,

while the radial displacement at the rotating band is given by

~f. ~co(q'-?~)(52)

where,

,.- (53)

Letting A6 and r respectively denote the initial radial

pre-compressions of the bourrelet and rotating band when the bore

centerline and projectile geometric axis are initially aligned,

it follows from Assumptions (i) thru (iv) that the radial loads

per unit circumferential length are given as

where ki (i=1,2) respectively denote the radial spring stiffness

per unit circumferential length of the bourrelet and rotating

band.

It is noted that the expressions presented in equation

(54) are valid for compression only, that is, for

21



Defining fc (i=1,2) as th" instantaneous maximum annular
i

range (measured from Ji) for compressive loading of the bourrelet

and rotating band, equation (54) may be written in the form

RiM) 2 (56)

It follows from oquation (55) and the definition of '9 that
i

when 0i= , W/2. Hence, in the absence of pre-compression,

Sciloading takes place on half of the bore surface, and this loading

is symmetric with respect to the angular oriontation of maximum

radial displacement. When S 0 it follows that '9 = T" Hence,
i

when displacement due to projectile motion is less than the pre-

compression, contact is maintained over the full bore surface.

For intermediate cases, namely 0 < i it follows that

1

The radial load distribution correspondinig to an intermediate

case is depicted in Figure 3.

The instantaneous interfacial contact loads acting on a

differential element of either the rotating band or bourrelet are

as depicted in Figure 4.

Under Assumption (vi), the friction force, /,UR acts tangen-

tial to the rifling surface in the direction opposing projectile

motion at the surface. The angle ot depicted in Figure 4 is given

by

t CL(tr (38)

22
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Figure 3-Radial Load Distribution for Intex'wediate Caqq
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where rb and tw denote respectively the bore radius and rifling

twist. In addition, in accordance with Assumption (vi) the

torque, T, applied to the rotating band per unit circumferential

length is assumed -to be a constant independent of f over the

range of compression.
-c

Letting dFi denote the incremental resultant contact load

acting on a differential element of either the bourrelet or

rotating band, it may be written in component form (relative to

S ) as
*oft01. ,.• lei le 0. (59)

where referring to Figure 4, there results for the bourrelet

.F R,( =- r), -co ,S OL (0

and for the rotating band

C

otFjC f% J rbRA(1f)I-COS T +/&A' I..3?Jh-T~in flf (61)

where 1 andS 2 denote respectively the coefficients of friction

at the bourreiet/bore and rotating-band/bore interfaces.

Hence, the resultant fcrce applied to the projectile c.g. is

25



obtained by integrating equation (59) over the respective

rotating-band/bore and bourrelet/bore interfacial contact surfaces

defined by ( ) 4-f ); i = 1, 2.

Substituting equation (54) into equations (60) and (61), and

performing the required integrations for both the rotating band

and bourrelet, there results the desired contributions to the

force components acting at the projectile c.g. (relative to So)

due to rotating band and bourrolet interfacial contact with the

bore, namely

'ip +zN+b(?tOfx+
Referr(62)

sinei+ 2h cc , l ft.s1L s I+

Referring again to Figure 14, the moment arm, I , from the

projectile c.g. to the load acting on the differential element is

given by

~4= 1t. +[r, cosf -(y,6J + (63)

26
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Hence, the resultant moment applied to the projectile c.g. is

given by

AL x dt. (64)

Substituting equations (54), (60), (61) and (63) into equa-

tion (64), and performing the required integrations for both the

rotating band and bourrelet, there results the contribution to

the moment components acting at the projectile c.g. (relative to

so) due to rotating band and bourrelet interfacial contact with

the bore, namely

j.s nt,,-, Cos -r, +,$in-q., it sin,[ +54 Cos

- rj l/sin' C +sn,)+ ri,...-, , i]f,, ]. *Si nt, jo,)J?

+2rTc•s-,,, ,.- , (65)

t ,rb ,.sin. t- oaf,)+ r,,, ) o. VS,1[2 s,+ If. , 0 +

The desired contribution to the moment components M, M and
x y

Mz (written relative to S), is obtained applying the transformation

27

• CM•Wo 4--4. ... .. .



given in equation (20), from which there results noting Assumption

(vii)

! • -- MZ* *"M;.•- 6M~

M - M (66)

t'10 M'.6

2.3.3 Propellant Gas Pressure and Compressed

Air Loadings

The loads and moments applied to the projectile c.g. due to

propellant gas pressure acting at the base of the projectile and

compressed ("ram") air ahead of the projectile are derived subject

to the following assumptions:

(i) both the projectile base and "ram" air pressures are

assumed to be known functions of time only, and at

any instant are uniformly distributed over the

respective projectile surfaces over which they act;

(ii) both the rotating band and bourrelet are assumed to

act as ideal seals (i.e., no gas leakage);

(iii) the Euler angles*' and 6 satisfy equation (34).

Under Assumptions (i) and (ii), the base and "ram" air

pressures act as effective hydrostatic pressures; generating a

force equal to - p-A-dA on the differential surface area element,

dA, with unit outward normal 71. Further, from general principles

of hydrostatics, these pres.ot1Le loadings may be replaced by

resultant forces acting at the geometric center of, and directed

perpendicular to, the planes containing the bourrelet and rotating

band. Hence, the points of application of these resultant forces



are defined by the respective intersection of each of these

planes with the Min tube centerline, as shown in Figure 5.

Since T is parallel to the geometric axis of the projectile,

it follows that

(67)

where pa and denote respectively the instantaneous "ram" air

and projectile base pressures, and A denotes the projected area

of the bourrelet and rotating band planes perpendicular to I.

Under Assumption (iii), it follows that

SA irr * (68)

Hence, the resultant pressure load, F , is given by

A. (69 )

which, noting that in view of Assumption (iii)

= + - 8 (70)

may be written in component form (relative to S for application

to equation (32) as

F.Ld. (71)g[ = p.).Tr- r,-' 7,
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Once again in view of Assumption (iii), it may be shown that

the moment arm, Ia' from the projectile e.g. to the "ram" air

load, Fa, is given by

J~4~(~3 ~V'* (z-LG) (72)

while the corresponding moment arm, -b to Fb is

(73)

Hence, the resultant moment applied to the projectile c.g.

is

SubstitutLng equations (67), (72) and (73) into equation

(74), and performing the indicated vector operations, there

results the desired contribution to the moment components acting

at the projectile c.g. (relative to S) due to propellait gas and

"ram" air pressures, in the form

Tri r, (r ' (75)

2.3.4 Summation of Applied Loads and Moments

Summing corresponding force components from equations (43),

(62) and (71), there results for application to equation (32)
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+ FC+ F r

F•x Ex0 %* A

r,= F/F+I (76)

F, , F'- Fe + F?
a. *0 1, or

Similarly, summing co rwsponrql ng moment components from

equations (66) and (75), there results for application to

equation (33)

MN= M;+ M (77)

+MM

2.4 Solution Technique

Within the framework of the assumptions introduced, equations

(32) and (33), with the applied loads aid moments as defined in

equations (76) and (77), prescribe projectile in-bore motion in

terms of projectile design data, isterior ballistics data, and

gun tube design and motion data. Of these required data, gun

tube motion data are not known a priori, and hence, equations

(32) and (33) must be solved simultaneously with the equations

of the gun dynamics simulation code (References 1 and 2).

Equations (32), (33), (76) and (77) consist of a system of

six simultaneous ordinary differential equations for the determi-

nation of the six unknowns vp 9cg' Z9g' z ' I, and T. However,

_ 32, r
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noting that v is to be prescribed by interior ballistics data,
p

the first equation in (32) may be deleted (or retained for use as

a check); rendering a system of five simultaneous equations for

incorporation within the gun dynamics simulation code.

To incorporate the projectile motion equations within the

simulation code, it is noted that the parameters representing

gun tube motion in equations (32) and (33), namely, the compo-

nents of o0, their time derivatives, the Euler angles, io, eo and

fo ,and their time derivatives, are related to gun tube motion

parameters defined in the simulation code. In addition, the

negative of the interfacial contact loads between the rotating-

band and bore, and bourrelet and bore, as applied to the projec-

tile, must be applied to the gun tube. The specific details of

incorporating the projectile in-bore motion equations herein

developed within the gun dynamics simulation code will be

presented in detail in a sepairtte report.
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3. COMPARISON WITH OTHER PROJECTILE DESCRIPTIONS AND FORMULATIONS

The formulation herein developed is general in that it

prescribes the full six dogree-of-freedom motion of a projectile

of finite geometry and inertia traveling in a flexible gun tube.

The degrees-of-freedom selected correspond to three orthogonal

translational motions of the projectile c.g. relative to the gun

tube axis and three (Eulerian) rotations of the projectile about

its c.g* (related to projectile pitch, yaw and roll motions).

Since gun tube motion (which is unrestricted within the formula-

tion) is not known a priori, the projectile equations of motion

herein formulated will be solved simultaneously with the equations

of the gun dynamics simulationi r,,de, previously developed (Refer-

ences 1 and 2).

A similar, but fa, more restrictive formulation has recently

been presented by S.H. Chu (Reference 3). Chu permits the projec-

tile three degrees-of-freedom; Iwo orthogonal translational

motions of the projectile c.g. relative to the gun tube and one

rotational (pitching) motion. As a consequence of neglecting the

remaining degree s-of-f rrodom, the (gun tube centerline, the projec-

tile c.g., and the restultants of the rotating band arid bourrelet

contact-load distributions with the bore all lie in the same

plane. Hence, Chu's formulation is essentially planar; whereas,

the formulation lhvrein pr','ntL'd is ,,f goieiwral three-dimensional

character.

Another recent, but also restrictive projectile motion

formulation has been presented by H.L. Langhaar and A.P. Poresi

(Reference 4). Langhaar and Boresi present a rigorous kinematical

description of a point movit,,, alont, a time-depi'tident spncr, rig,-,.

ME 177t
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The point is identified with the goowetric center of a rigid pro-

jectile. The time-dependent space curve is identified with the

centerline of a flexible gun tube. The projectile is further

characterized such that its geometric center and c.g. coincide

(which precludes the ability to iiivestigate the effects of mass

eccentricity), and such that its goometric a.is is directed along

the instantaneous tangent to the gun tube centerline (which

precludes the ability to investigate the effects of projectile

pitch and yaw motions relative to the gun tube). The projectile

is permitted two degrees-of-freedom relative to the gun tube;

translational motion of' its e.g. along the gun tube centerline

and rotational motion about the centerline (corresponding to

projectile spin). Accounting for rotary inertia of the projec-

tile about its spin axis, there results a traveling point-mass

projectile load with superpoued gyroscopic couple.

J.J. Wu (Reference 5) also adopts a traveling point-mass

projectile description, but with superposed traveling pitching

moment due to mass eccentricty (while neglecting rotary inertia

about the pitch axis). Several other investigators (References

6 thru 8) have adopted the simpler traveling point-mads descrip-

tion, with aad without mass eccentricity and projectile spin

(while neglecting rotary inertia about the spin axis).
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4. CONCLUSIONS

A system of simultaneous differential equations has been

formulated which describes the general motion of a projectile of

finite geometry and inertia traveling in a flexible gun tube.

The formulation permits the projectile six degrees-of-freedom

relative to the gun tube; three orthogonal translational motions

of the projectile c.g. relative to the gun tube axis and three

(Eulerian) rotational motions of the projectile about its c.g.

(related to projectilo pitch, yaw and roll motions). The formu-

lation is presented in terms of interior ballistics data, projec-

tile design data, and gun tube design and motion data. The formu-

lation accounts for projectile spin, mass eccentricity, elastic

deformation of the projectile rotating band and bourrelet, and

projectile/bore interfacial friction and torque transmission.

Furthermore, the formulntion is unrestricted regarding the nature

of gun tube motion.

The formulation herein contained has been compared with pro-

Jectile descriptions and formulations employed by other investi-

gators and, based upon this compai'ison, is considered to be the most

generally applicable formulation appearing in recent literature.

Since gun tube motion is not known a priori, and indeed

since projectile motion affects gun tube motion and vice versa,

the projectile in-bore motion equations herein formulated will be

incorporated within and solved simultaneously with the gun

dynamics simulation code equations previously developed; permit-

ting replacement of the traveling point-mass projectile descrip-

tion presently contained within the code. Incorporation of the

projectile motion equations witbin the simulation code and

Z7 "7



sinultaneous solution with the gun dynamics equations, as well as

comparison of the results obtained with previously obtained

results treating the projectile a.s a traveling point-mass, will

be presented in a separate report.
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APPENDIX

The instantaneous angular orientation of the coordinate

system S0 , with coordinates (X 0 ,yoz 0 ) and unit triad (To, oio),

relative to the coordinate system S , with coordinates (x ,y ,z)

and unit triad (i ,j ,k ), is definod in terms of the Euler angles

depicted in Figure A.

Referring to Figure A, the instantaneous angular orientation

of S0 is achieved by subjecting S to the folluwing consecutive

rotations:

(i) about z , bringing x to its final elevation,

and y to its intermediate orientation, t;

(ii) 0o about 11 bringing ý to its final azimuth, x0,

and z' to its final azimuth, ;

(iVi) 99 about Xc bringing I to its final orientation, Yo,

and to its final elevation, z
0

The direction cosines, ij', defining the transformation

between S and S are obtained by noting the relation between the0

unit triads depicted in Figure A subsequent to each consecutive

rotation, as follows:

(i) following the rotationr o, there results

- coj •- siY4•

(ii) following the rotation 80o there results

C06-•io 00 . + Y• L9. l
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(iii) following the rotation TO' there results

Eliminating the unit triad associated with the

intermediate coordinates (Q,)f 4) there results tbe transforma-

tion presented in equation (i), with the direction cosines as

defined in equation (2).

The relation between the angular velocity of S relative to

00

S namely •o and the Euler angles, is obtained by noting that

and substituting the above transformations betweon unit triads to

obtain ro in the form prescribed in equation (11); which renders
0

the components as given in equation (12).
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